III : Thermo-Mechanical Fatigue in Electronic Devices
نویسندگان
چکیده
منابع مشابه
Thermo-Mechanical Fatigue Crack Growth of RR1000
Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-is...
متن کاملThermo-Mechanical Failure Criterion at the Micron Scale in Electronic Devices
Thermo-mechanical failures may occur in the passivation layer of micro-electronic devices during the fabrication process. These are in form of cracks which initiate at keyhole corners. In order to predict and eventually prevent these cracks a failure criterion is presented, based on an average value of the elastic strain energy in the vicinity of a reentrant corner of any angle. The proposed st...
متن کاملReview on Thermo-Mechanical Fatigue Behavior of Nickel-Base Superalloys
Nickel-base superalloys have become the key materials of hot-end components in the aeroengines over the past several decades. Nickelbase superalloys are easy to produce thermo-mechanical fatigue (TMF) behavior when withstanding the combined effects of high temperature, creep, oxidation, mechanical stress and thermal stress. The occurrence of TMF seriously affects the normal service for hot-end ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Society of Materials Science, Japan
سال: 2007
ISSN: 1880-7488,0514-5163
DOI: 10.2472/jsms.56.302